organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bing-Zhan Song,* Jian Song, Guo-Cheng Wang and Wei-Dong Wang

College of Pharmaceuticals and Biotechnology Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: sbz2288@eyou.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.035 wR factor = 0.091 Data-to-parameter ratio = 17.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

6,6-Dithiobis(6,7-dihydro-5*H*-pyrazolo[1,2-*a*]-[1,2,4]triazolium) dichloride methanol solvate dihydrate

Received 16 August 2005 Accepted 9 February 2006

The title compound, $C_{10}H_{14}N_6S_2^{2+}\cdot 2Cl^-\cdot CH_4O\cdot 2H_2O$, was synthesized by the intermolecular cyclization of bis(4-pyrazolidinyl) disulfide dihydrochloride and ethyl formimidate hydrochloride. The water molecules form hydrogen bonds with each other and the chloride counter-ions. One chloride counter-ion is also involved in $O-H\cdot\cdot Cl$ hydrogen bonding with the methanol solvent molecule.

Comment

The title compound, (I), is an important intermediate in the synthesis of biapenem which is one of the most effective antibacterial drugs (Kumagai *et al.*, 1998) in the anti-infective chemotherapy field.

The molecular structure of (I) is shown in Fig. 1. There is extensive $O-H\cdots O$ and $O-H\cdots Cl$ hydrogen bonding within the crystal structure involving water, chloride and methanol (Table 1).

Experimental

A mixture of bis(4-pyrazolidinyl) disulfide dihydrochloride (28 g, 0.1 mol), ethyl formimidate hydrochloride (109 g, 1 mol) and KHCO₃ (20 g, 0.2 mol) was added to Hwater (1 l) at 273 K, and the mixture was stirred for 10 min. After adjusting to pH = 2 with 6 *M* HCl, the acidic reaction mixture was evaporated to dryness *in vacuo*. The solid residue was recrystallized from methanol to give the title compound, (I) (m.p. 556–557 K). ¹H NMR (D₂O, 270 MHz): δ 4.70–4.85 (*m*, 6H), 4.85–5.00 (*m*, 4H), 8.90 (*s*, 4H); ESI MS *m*/*z* 317.04 [(*M* – Cl)⁺]. 1 g of (I) was dissolved in methanol (200 ml) and ethyl acetate (200 ml); the solution was kept at room temperature for 15 d. Natural evaporation gave colorless single crystals of (I) suitable for X-ray analysis.

Crystal data

 $C_{10}H_{14}N_6S_2^{2+}\cdot 2Cl^-\cdot CH_4O\cdot 2H_2O$ $D_x = 1.508 \text{ Mg m}^{-3}$ $M_r = 421.37$ Mo $K\alpha$ radiation Monoclinic, $P2_1/c$ Cell parameters from 1021 a = 9.942 (3) Å reflections b = 14.854 (4) Å $\theta = 3.4 - 26.1^{\circ}$ $\mu = 0.60~\mathrm{mm}^{-1}$ c = 13.175 (4) Å $\beta = 107.502 \ (4)^{\circ}$ T = 293 (2) K V = 1855.5 (9) Å³ Block, colorless Z = 40.24 \times 0.22 \times 0.18 mm

© 2006 International Union of Crystallography All rights reserved

The molecular structure of the cation in (I), shown with 30% probability ellipsoids.

Figure 2

The crystal structure of (I), viewed along the a axis. H atoms have been omitted. Dashed lines indicate hydrogen bonds.

Data collection

3826 independent reflections
2941 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.027$
$\theta_{\rm max} = 26.5^{\circ}$
$h = -12 \rightarrow 12$
$k = -18 \rightarrow 16$
$l = -12 \rightarrow 16$

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_0^2) + (0.0425P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.035$ wR(F²) = 0.091 S = 1.023826 reflections 219 parameters H-atom parameters constrained

$\begin{array}{l} (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-2} \end{array}$

+ 0.6565P] where $P = (F_0^2 + 2F_c^2)/3$

Table 1	
Hydrogen-bond geometry (Å, °)).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1A\cdots Cl2$	0.82	2.32	3.13	166
$O2-H2A\cdots O3$	0.97	1.90	2.84	163
$O2-H2B\cdots Cl1^{i}$	0.90	2.29	3.17	165
$O3-H3C\cdots Cl2$	0.93	2.18	3.08	165
$O3-H3D\cdots$ Cl1	0.89	2.43	3.31	169

Symmetry code: (i) -x + 1, -y, -z + 1.

H atoms were positioned geometrically, with C-H = 0.93-0.98 Å, and refined with a riding model, with $U_{iso}(H) = 1.2U_{eq}(\text{carrier atom})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors thank He Yi and Xu Xueyu for their assistance.

References

Bruker (1997). SADABS, SMART, SAINT and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.

Kumagai, T., Tamai, S., Abe, T., Matsunaga, H., Hayashi, K., Kishi, I., Shiro, M. & Nagao, Y. (1998). J. Org. Chem. 63, 8145-8149.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.